Evaluations of commercial sleep technologies for objective monitoring during...
Evaluations of commercial sleep technologies for objective monitoring during routine sleeping conditions.
Source: WVU Rockefeller Neuroscience Institute Photo

Monitoring your ZZZs - how sleep trackers perform

Researchers at West Virginia University tested the efficacy of eight commercial sleep trackers. The result: you snooze, you lose – at least with with some of them, the neuroscientists say.

Wearable sleep tracking devices - from Fitbit to Apple Watch to never-heard-of brands stashed away in the electronics clearance bin – have infiltrated the market at a rapid pace in recent years. And like any consumer products, not all sleep trackers are created equal, according to West Virginia University neuroscientists.

Prompted by a lack of independent, third-party evaluations of these devices, a research team led by Joshua Hagen, director of the Human Performance Innovation Center at the WVU Rockefeller Neuroscience Institute, tested the efficacy of eight commercial sleep trackers.

Fitbit and Oura came out on top in measuring total sleep time, total wake time and sleep efficiency, the results indicate. All other devices, however, either overestimated or underestimated at least one of those sleep metrics, and none of the eight could quantify sleep stages (REM, non-REM) with effective accuracy to be useful when compared to an electroencephalogram, or EEG, which records electrical activity in the brain.

“The biggest takeaway is that not all consumer devices are created equal, and for the end user to take care in selecting the technology to suit their application based on the data,” Hagen said. “Some devices are currently performing well for total sleep time and sleep efficiency, but the community at large seems to still struggle with sleep staging (deep, REM, light). This is not surprising, since typically brain waves are needed to properly measure this. However, when thinking about what you generally have control over with your sleep – time to bed, time in bed, choices before bed that impact sleep efficiency – these can be accurately measured in some devices.”

Recommended article

Researchers observed five healthy adults – two males, ages 26 and 41, and three females, ages 22, 23 and 27 – who participated by wearing the sleep trackers for a combined total of 98 nights.

The commercial sleep technologies displayed lower error and bias values when quantifying sleep/wake states as compared to sleep staging durations. Still, these findings revealed that there is a remarkably high degree of variability in the accuracy of commercial sleep technologies, the researchers stated. “While technology, both hardware and software, continually advances, it is critical to evaluate the accuracy of these devices in an ongoing fashion,” Hagen said. “Updates to hardware, firmware and algorithms happen continuously, and we must understand how this affects accuracy.”

Research in this area will evolve with the technology, added Hagen, who himself utilizes four to five sleep devices to keep monitoring his ZZZs. “I’m a big believer in living the research,” he said. “I need to understand what the consumer sees in the smartphone apps, what the usability of the devices is, etc. Without that objective sleep data, you can only rely on how you feel when you wake up – and while that is important, that doesn’t tell the whole story. If your alarm goes off and you happen to be in a deep sleep stage, you will wake up very groggy, and could feel as though that sleep was not restorative, when in fact it could have been. It’s just not subjectively noticeable right at that moment.”

At the end of the day, however, it’s up to the user’s needs as to which product may be most suited for that person, Hagen added. “After accuracy, it comes down to logistics. Do you prefer a watch with a display? A ring? A mattress sensor? What is the price of each? Which smartphone app is most appealing? But again, that is if all accuracies are close to equal. If the price is right and the form factor is ideal, but the data accuracy is extremely poor, then those factors don’t matter.”

The Human Performance Innovation Center works with members of the US military along with collegiate and professional athletes to better understand and optimize human performance, resiliency, and recovery, applying these findings to solutions for the general and clinical populations.


The study is published in the Nature and Science of Sleep.

Subscribe to our newsletter

Related articles

Optimal use of activity trackers fails due to outdated computer skills

Optimal use of activity trackers fails due to outdated computer skills

Activity trackers are rising in popularity. Yet a new study demonstrates that many struggle to optimally use these devices. The cause? Outdated digital literacy skills.

Sticker detects cystic fibrosis in newborn's sweat

Sticker detects cystic fibrosis in newborn's sweat

Researchers have developed a novel skin-mounted sticker that absorbs sweat and then changes color to provide an accurate, easy-to-read diagnosis of cystic fibrosis within minutes.

Harvesting energy from radio waves to power wearables

Harvesting energy from radio waves to power wearables

Researchers have developed a way to harvest energy from radio waves to power wearable devices.

Hearables: How to make headphones intelligent

Hearables: How to make headphones intelligent

Engineers have invented a cheap and easy way by transforming headphones into sensors that can be plugged into smartphones to monitor users heart rates.

From the wrist into the ear – the potential of hearables

From the wrist into the ear – the potential of hearables

A subset of wearables are the so-called hearables – in-ear devices that are well suited for long-term monitoring as they are non-invasive, inconspicuous and easy to fasten.

Using wearables to keep babies healthy

Using wearables to keep babies healthy

Researchers at the WVU School of Medicine explored how a wearable device called WHOOP could be used to monitor pregnant women’s resting heart rate and heart rate variability.

Sense Glucose Earring for managing diabetes

Sense Glucose Earring for managing diabetes

A product design graduate has developed a discreet item of wearable technology that monitors blood sugar levels and delivers feedback in real-time.

The role of mhealth in monitoring Covid-19 patients

The role of mhealth in monitoring Covid-19 patients

Researchers have examined how mobile technologies have been used in monitoring and mitigating the effects of the Covid-19 pandemic.

3D printed transparent fibers can sense breath

3D printed transparent fibers can sense breath

Researchers used 3D printing techniques to make electronic fibres, each 100 times thinner than a human hair, creating sensors beyond the capabilities of conventional film-based devices.

Popular articles

Subscribe to Newsletter